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Abstract
Japanese red pine (Pinus densiflora) is widely present in China, Japan, and Korea. Its

green pine leaves have traditionally been used as a food as well as a coloring agent. After

being shed, pine leaves change their color from green to brown within two years, and al-

though the brown pine leaves are abundantly available, their value has not been closely as-

sessed. In this study, we investigated the potential anti-photoaging properties of brown pine

leaves for skin. Brown pine leaf extract (BPLE) inhibited UVB-induced matrix metalloprotei-

nase-1 (MMP-1) expression to a greater extent than pine leaf extract (PLE) in human kerati-

nocytes and a human skin equivalent model. HPLC analysis revealed that the quantity of

trans-communic acid (TCA) and dehydroabietic acid (DAA) significantly increases when the

pine leaf color changes from green to brown. BPLE and TCA elicited reductions in UVB-in-

duced MMP-1 mRNA expression and activator protein-1 (AP-1) transactivation by reducing

DNA binding activity of phospho-c-Jun, c-fos and Fra-1. BPLE and TCA also inhibited UVB-

induced Akt phosphorylation, but not mitogen activated protein kinase (MAPK), known reg-

ulators of AP-1 transactivation. We additionally found that BPLE and TCA inhibited phos-

phoinositide 3-kinase (PI3K), the upstream kinase of Akt, in vitro. In summary, both BPLE

and its active component TCA exhibit protective effects against UVB-induced skin aging.

Taken together, these findings underline the potential for BPLE and TCA to be utilized as

anti-wrinkling agents and cosmetic ingredients, as they suppress UVB-induced MMP-1

expression.
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Introduction
Human skin acts as an interface between the environment and our body [1]. Chronic ultravio-
let (UV) exposure causes detrimental physiological changes to skin including epidermal in-
flammation, hyperpigmentation, immunosuppression and photoaging [2–5]. Among the
subtypes of UV including UVA (320–400 nm), UVB (280–320 nm), and UVC (200–280 nm)
[6], UVA and UVB are able to pass through the ozone layer and penetrate human skin. UVA
and UVB make up 95% and 2–5%, respectively, of the UV radiation normally reaching skin
[7]. In particular, UVB is the major source of skin damage and an etiological factor for many
diseases and extrinsic skin aging as it has much higher intrinsic energy than UVA [8].

Photoaging, an extrinsic skin aging process, is characterized by pigmentary changes and se-
vere wrinkle formation [9]. Exposure to UVB alters biological processes that promote matrix
metalloproteinase (MMP) expression, decrease procollagen synthesis, and increase connective
tissue damage [3, 9, 10]. Collagen breakdown by collagenase is a major cause of wrinkle forma-
tion. It is also related to extracellular matrix breakdown, which causes detrimental effects to
connective tissues in various pathological situations [11–14]. MMP-1 is a critical enzyme for
type-1 and type-3 collagen degradation in human skin [4, 8]. Preventing unbalanced collagen
degradation via inhibition of MMP-1 expression represents a potential strategy for anti-
photoaging.

UVB induces MMP-1 protein expression via the activation of cellular signaling. UVB irradi-
ation activates cell surface receptors including the epidermal growth factor receptor (EGFR),
which leads to propagation of intracellular signaling such as mitogen-activated protein kinases
(MAPKs), phosphoinositide 3-kinase (PI3K)/Akt, Jak/STAT, and protein kinase-C [15–18]
pathways. These pathways elevate activator protein 1 (AP-1) which is a transcription factor
that plays a crucial role in transcription of MMP-1 [19]. The AP-1 family is composed of Jun
proteins (c-Jun, v-Jun, JunB, JunD) and Fos proteins (c-Fos, v-Fos, FosB, Fra-1, Fra-2), involv-
ing activating transcription factors (ATF2, ATF3/LRF1, B-ATF) and basic region leucine zip-
per (bZIP) homodimerization or heterodimerization [20–22]. Phosphorylation of AP-1
subunits by their upstream kinases increases its translocation from the cytosol to the nucleus
and enhances its DNA binding affinity. In turn, the target genes of AP-1 including MMP-1 are
activated [23]. Therefore, by regulating upstream kinases such as PI3K/Akt or MAPK, target
genes of AP-1 can be regulated.

Japanese red pine (Pinus densiflora), a member of the Pinaceae family, has long been culti-
vated in China, Russia, Japan, and Korea [24]. In Korea, approximately 65% of land is forest
and pines occupy approximately 87% of the coniferous forests [25]. Pine leaves have historical-
ly been used as a food ingredient for color and flavor. They have also been used as a folk reme-
dy for inflammatory diseases such as gastroenteritis, rheumatism, hemorrhage and asthma
[26]. Fallen pine leaves stay green for 2 years until their color changes to brown [27]. Although
these ‘brown pine leaves’ are abundant in forests and parks, they have not commonly been
used or studied as a functional material.

In this study, we investigated the anti-photoaging effects of brown pine leaf extract (BPLE)
and its active component trans-communic acid (TCA), for their potential application as anti-
skin aging agents.

Materials and Methods

Chemicals and reagents
HaCaT cells were purchased from CLS Cell Lines Service GmbH (Eppelheim, Germany). Dul-
becco’s modified eagle medium (DMEM) was purchased from Hyclone (Long, UT, USA). Fetal
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bovine serum (FBS) and β-actin antibody were bought from Sigma-Aldrich (St. Louis, MO,
USA). The MMP-1 antibody was obtained from R&D Systems (Minneapolis, MN, USA). Anti-
bodies against phosphorylated extracellular-signal regulated kinase 1/2 (ERK1/2) (Thr202/
Tyr204), total ERK1/2, total c-Jun N-terminal kinase 1/2 (JNK1/2), phosphorylated-p38
(Thr180/Tyr182), and total p38 were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). Antibodies against phosphorylated Akt (Ser473), total Akt, phosphorylated JNK1/2
(Thr183/Tyr185), phosphorylated p90RSK (Thr359/Ser363) and total p90RSK were purchased
from Cell signaling (Danvers, MA, USA). 3-[4,5-dimethylatiazol-2-yl]-2,5 diphenyltetrazolium
bromide (MTT) powder was purchased from USB co. (Cleveland, OH, USA). Penicillin/strep-
tomycin was purchased from Invitrogen (Grand Island, NY, USA). Protein assay kits were
obtained from Bio-Rad Laboratories (Hercules, CA, USA).

UVB irradiation
UVB (Bio-Link crosslinker, VilberLourmat, Cedex 1, France) was irradiated to the cells in
serum-free media. The spectral peak of UVB was set at 312 nm. HaCaT cells were exposed to
UVB at 0.01 J/cm2.

Cell culture
HaCaT cells were cultured in 10% (v/v) FBS-DMEM with 1 μg/ml penicillin/streptomycin at
37°C under a 5% CO2 atmosphere. For the luciferase assay, HaCaT cells were stably transfected
with AP-1 luciferase reporter plasmid. Transfected HaCaT cells were cultured in 10% (v/v)
FBS-DMEM with 1 μg/ml puromycin.

Human Skin equivalent preparation
Human skin equivalent (Neoderm-ED) was purchased from Tegoscience (Seoul, Republic of
Korea). The human skin equivalent was treated with BPLE (5, 10 μg/ml) and TCA (5, 10 μM)
for 1 h after 2 weeks of air-lift. The skin equivalent was then irradiated with UVB at 0.05 J/cm2

twice a day for 8 days, and the medium was changed every 2 days for 8 days. The skin equiva-
lent was incubated at 37°C under a 5% CO2 atmosphere.

Preparation of pine leaf extracts and isolation and purification of DDA
and TCA
The green and brown leaves of Pinus densiflora Siebold & Zucc (pine needles) were collected
from the Amorepacific Botanical Garden (Osan, Republic of Korea). Dried green pine needles
and brown pine needles were ground and extracted with ten volumes of 80% ethanol for 2 days
at room temperature. The extracts were obtained by filtering and evaporating the solvent. The
brown pine needle extracts (11.4 g) were sequentially fractionated with hexane (HA), chloro-
form, butyl alcohol, and water. The HA fraction (2.93) was applied to a silica gel column (60,
70–230 mesh, Merck & Co., Whitehouse Station, NJ, USA) and eluted with chloroform and
methanol solution (10:0.7 v/v) to obtain five fractions (Fractions Ι-V). Fraction ΙΙ was subjected
to Rp-18 column chromatography (LiChroprep RP-18 25–40 μm, Merck & Co.) and eluted
with 70% methanol. Compound II-A (348mg) and Compound II-C (826mg) were finally ob-
tained as a single compound. A comparison of spectral data from compound ΙΙ-A analysis by
several methods, including 13C nuclear magnetic resonance (NMR), 1H-NMR, and electron-
ionization mass spectrometry (EI-MS) with data in the literature suggested the chemical struc-
ture to be DDA or abieta- 8,11,13- trien- 18- oic acid [28, 29]. Also, a comparison of spectral
data from compound ΙΙ-C analysis by several methods, including 13C nuclear magnetic
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resonance (NMR), 1H-NMR, and electron-ionization mass spectrometry (EI-MS) with data in
the literature (3) suggested the chemical structure to be TCA or 1,4a-Dimethyl-6-methylene-5-
(3-methyl-penta-2,4-dienyl)-decahydro-naphthalene-1-carboxylic acid [30].

Cell viability
Cell viability was measured by MTT assay. HaCaT cells were cultured in 96 well plates at a den-
sity of 4×105 cells/well and were incubated in DMEM-10% FBS containing penicillin/strepto-
mycin at 4°C in a 5% CO2 atmosphere. After reaching 80% cell confluence, the HaCaT cells
were starved in serum-free DMEM for 24 h. The cells treated with different dosage of samples
were incubated for 22 h at 37°C. After incubation, MTT solution was treated for 2 h. The medi-
um was removed and the remaining formazan crystals in the cells were dissolved by DMSO. A
microplate reader (Molecular Devices, Sunnyvale, CA, USA) was used to measure the color
density at 570 nm.

Real-time PCR
HaCaT cells (1.0×106 cells in a 6 well dish) were treated with brown pine leaf extract and TCA
for 15 h and harvested in RNAiso Plus (Takara Bio, Inc., Shiga, Japan). After reverse transcrip-
tion with oligo-dT primers using a PrimeScriptTM 1st strand cDNA synthesis Kit (Takara Bio,
Inc.), the cDNA was probed with the following primers (Bioneer, Daejeon, Korea): MMP-1 for-
ward 5’-ATT CTA CTG ATA TCG GGG CTT TGA-3’, MMP-1 reverse 5’-ATG TCC TTG
GGG TAT CCC TGT AG-3’ (409 bp); GAPDH forward 5’-GAG TCA ACG GAT TTG GTC
GT-3’, GAPDH reverse 5’-TTG ATT TTG GAG GGA TCT CG-3’(517 bp). Before PCR ampli-
fication, the primers were denatured at 94°C for 5 min. Amplification consisted of 22 cycles:
denaturation at 94°C for 30 s, annealing at 56°C for 1 min, and extension at 72°C for 1 min fol-
lowed by a final 5 min extension at 72°C. PCR was performed with a Gene Amp PCR System
2700 (Applied Biosystems, Foster City, CA, USA). The RT-PCR reaction was performed using
a CFX96 real-time PCR detection system (Bio-Rad). cDNA was amplified in the presence of iQ
SYBR Green Supermix (Bio-Rad). To control for variations in mRNA concentration, all results
were normalized to GAPDH. Relative quantitation was performed using the comparative ΔΔCt
method following the manufacturer’s instructions.

MMP-1 content measurement
Cultured HaCaT cells were starved in serum free-DMEM for 24 h to exclude potential FBS-ac-
tivated cell signals. After starvation, the cells were treated with various concentrations of the
samples for 1 h, followed by UVB (0.01 J/cm2) irradiation. The conditioned media was collect-
ed after 48 h of incubation, and the samples were analyzed with a DuoSet human total MMP-1
ELISA kit (R&D system Inc.) for MMP-1 content as described in the manufacturer’s protocols.

Western blot assay
HaCaT cells were starved in serum free-DMEM for 24 h to lower the growth signals stimulated
by FBS. After starvation, the cells were treated with various concentration levels of samples for
1 h, followed by UVB (0.01 J/cm2) irradiation. The cells were scraped in a lysis buffer [10 mM
Tris (pH 7.5), 150 mM NaCl, 5 mM ethylene diamine tetra acetic acid (EDTA), 1% Triton X-
100, 1 mM dithiothreitol (DTT), 0.1 mM phenylmethylsulfonyl fluoride (PMSF), 10% glycerol
and protease inhibitor cocktail tablet], incubated on ice for 20 min, and then centrifuged at
18,620×g for 10 min. The protein concentrations were measured by a dye-binding protein
assay kit (Bio-Rad) as described by the manufacturer. The proteins were separated by
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electrophoresis in a 10% SDS-polyacrylamide gel and transferred to Immobilon P membrane
(Millipore, Billerica, MA, USA). The membrane was blocked with 5% fat-free milk for 1 h and
then incubated with the specific primary antibody at 4°C overnight. Protein bands were visual-
ized by a chemiluminescence detection kit (GE healthcare, NJ, USA) after hybridization with
an HRP-conjugated secondary antibody (Santa Cruz Biotechnology).

Ap-1 binding assay
Nuclear extracts preparation and the AP-1-family TransAM assay were performed following
the manufacturer's instructions (Active Motif, Carlsbad, CA, USA).

Zymography
Zymography was used to determine the activity of secreted MMP-2. Zymography was con-
ducted with a 10% polyacrylamide gel in the presence of gelatin (0.5 mg/ml) as a substrate for
MMP-2. The samples were suspended in loading buffer [10% SDS, 25% glycerol, 0.25 M Tris
(pH 6.8) and 0.1% bromophenol blue], and then run on a 10% SDS-PAGE gel without denatur-
ation. After electrophoresis, the gel was washed with renaturating buffer (Invitrogen) at room
temperature for 30 min, and then incubated in developing buffer (Invitrogen) for 24 h at 37°C.
The gel was then stained with 0.5% Coomassie brilliant blue.

Lentiviral infection
The lentiviral expression vector pGF-AP1-mCMV-EF1-Puro was purchased from System Bio-
sciences (Mountain View, CA, USA), and the packaging vectors, including pMD2.0G and
psPAX, were purchased from Addgene Inc (Cambridge, MA, USA). A pGF-AP1-mCM-
V-EF1-Puro vector and the packaging vectors (pMD2.0G and psPAX) were transfected into
HEK293T cells using jetPEI following the manufacturer's instructions. The transfection medi-
um was changed at 4 h after transfection, and the cells were then cultured for 36 h. The viral
particles were harvested by filtration using a 0.45 mm syringe filter, then combined with 8 μg/
ml polybrene (EMDMillipore) and infected into 60% confluent HaCaT cells overnight. The
cell culture medium was replaced with a fresh complete growth medium for 24 h before the
cells were selected for using puromycin (2 μg/ml, Sigma-Aldrich) over 36 h. The selected cells
were then used for further experiments.

Luciferase reporter gene assay
HaCaT cells stably transfected with AP-1 luciferase plasmid were cultured in 96 well plates at a
density of 4×105 cells/well. After incubation in DMEM-10% FBS containing penicillin/strepto-
mycin at 4°C in a 5% CO2 atmosphere, the cells were starved in serum-free DMEM for 24 h.
Then the cells were treated with various concentration of samples for 1 h followed by UVB
(0.01 J/cm2) irradiation. After 12 h of incubation, the cells were treated with lysis buffer [0.1
mM potassium phosphate buffer (pH 7.8), 2 mM ethylene diamine tetra acetic acid (EDTA),
1% Triton X-100, 1 mM dithiothreitol (DTT)] before their luciferase activities were measured
by luminometer (Luminoskan Ascent; Thermo Electron, Helsinki, Finland).

PI3K assay
To determine the PI3K activity in the presence or absence of BPLE and TCA, the HTRF assay
was carried out by Eurofins Pharma Discovery (Dundee, UK). Briefly, various concentrations
of BPLE and TCA were incubated with the recombinant p110α/p85α, p110β/p85α, and p110δ/
p85α in the assay buffer. The reaction was initiated by addition of 200 μMATP and stopped
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after 30 min of incubation by adding the stop solution containing EDTA and biotin-PIP3. De-
tection buffer was then added, and the resulting mixture was further incubated for 14 h. Signals
from the wells were detected using the microplate reader. Time resolved fluorescence was mea-
sured at 620 nm and 665 nm after excitation at 337 nm and HTRF counts were determined
according to the following formula HTRF = 10000�(Em 665 nm/Em 620 nm). The PI3K inhib-
itory activity of each compound was calculated according to the following formula: PI3K-inhi-
bition (%) = (plusenzyme control–sample) / (plus-enzyme control–minus-enzyme control) ×
100. For the plus-enzyme control, the kinase was incubated with PIP2 and ATP in the absence
of BPLE or TCA, and for the minus-enzyme control, PIP2 was incubated with ATP in the ab-
sence of kinase and BPLE or TCA.

Immunohistochemistry
Skin sections from the human skin equivalent were prepared for immunohistochemical stain-
ing of MMP-1 expression. Sections (5 mm thick) of 10% neutral formalin solution-fixed paraf-
fin-embedded tissues were cut on silane-coated glass slides. They were deparaffinized three
times with xylene, and dehydrated through a graded alcohol bath. The deparaffinized sections
were incubated in citric acid buffer (pH 6.0) and boiled for antigen retrieval. To prevent non-
specific staining, each section was treated with 3% hydrogen peroxide for 10 min with a block-
ing solution containing 1% bovine serum albumin (BSA) for 30 min. For the detection of the
MMP-1 target, the slides were incubated overnight with an affinity-purified primary antibody
at 4°C in 1% BSA, and then developed using an anti-rabbit or anti-mouse Histostain Plus Kit
(Zymed Laboratories Inc., South San Francisco, CA, USA). Peroxidase binding sites were de-
tected by staining with 3,3’–diaminobenzidinetetrahydrochloride (Sigma-Aldrich). Mayer’s he-
matoxylin was applied as a counterstain (Sigma-Aldrich). Quantification was conducted using
the Image J program with IHC tool box plug in.

Masson’s trichrome staining
Skin sections from the human skin equivalents were prepared for Masson’s trichrome staining
for collagen. Sections (5 mm thick) of 10% neutral formalin solution-fixed paraffin-embedded
tissues were cut on silane-coated glass slides, and then deparaffinized three times with xylene
and dehydrated through a graded alcohol bath. The deparaffinized sections were stained with
hematoxylin for 5 min. The slides were then washed and stained in biebrich scarlet and acid
fuchsin. Next, the slides were placed in phosphomolybdic-phosphotungstic acid for 10 min
and aniline blue for 5 min to stain the collagen. The slides were then washed and incubated in
1% acetic acid for 15 min. Finally, they were dehydrated and washed. Quantification was per-
formed using the Image J program with IHC tool box plug in.

Statistical analysis
Data are expressed as the means ± standard deviation (S.D.). One-way analysis of variance
(ANOVA) with Tukey’s HSD test was used to evaluate mean differences between groups and
statistical significance. Differences were considered significant at p<0.05.

Results

BPLE has a stronger inhibitory effect against UVB-induced MMP-1
expression than PLE in HaCaT cells
BPLE and PLE were tested for their inhibitory effect against UVB-induced MMP-1 expression
in HaCaT cells within the range of concentration which did notexhibit cytotoxicity (Fig 1A and
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1B). The results indicated that BPLE inhibits UVB-induced MMP-1 expression in a dose-de-
pendent manner while not affecting MMP-2. This inhibitory effect of BPLE on MMP-2 was

Fig 1. TCA contributes to the inhibitory effect of BPLE on UVB-induced MMP-1 expression in HaCaT cells. A andC, Protein expression was analyzed
byWestern blotting (MMP-1), Zymography (MMP-2), and ELISA (MMP-1 contents). Cells were treated with BPLE/PLE (A) or TCA/DAA (C) at the indicated
concentration for 1 h before being exposed to 0.01 J/cm2 of UVB, and media was harvested 48 h later. B and D, Cell viability of HaCaT cells in the presence
or absence of BPLE, PLE (B) or TCA, DAA (D). Cell viability was measured using MTT assay. Each experiment was performed in triplicate. The data are
presented as the mean ±S.D. of MMP-1 protein content and cell viability. Means with different letters (a-c) within a graph were significantly different from each
other at p < 0.05.

doi:10.1371/journal.pone.0128365.g001
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stronger than PLE, suggesting there is a compositional difference between BPLE and PLE
which may result in their differential effects.

TCA and DAA increase during the color change process of pine leaf from
green to brown
Because BPLE has a markedly stronger inhibitory effect than PLE against UVB-induced MMP-
1 protein expression, we hypothesized that the composition of pine leaves changes and new
components with bioactive function are produced during the color changing process. To iden-
tify compositional difference between BPLE and PLE, we analyzed their chemical profile by
HPLC. Notably, while trans-communic acid (TCA) and dehydroabietic acid (DAA) are de-
tected as 90.5 mg/g and 14.26 mg/g each in PLE, their quantities went up to 180.62 mg/g and
60.3 mg/g each in BPLE (S1 and S2 Figs). This finding leads us to further test the effect of TCA
and DAA in HaCaT cells.

TCA is a key bioactive component in BPLE
To verify if TCA and DDA contribute to the bioactive function of BPLE, the effect of TCA and
DAA against UVB-induced MMP-1 protein expression in HaCaT cells were examined at con-
centrations that were non-cytotoxic (Fig 1C and 1D). The results showed that TCA, but not
DAA, inhibited UVB-induced MMP-1 protein expression in a dose-dependent manner. There-
fore, TCA is thought to be a major active component of BPLE, which may be, at least partially,
responsible for the activity of BPLE.

BPLE and TCA inhibits UVB-induced MMP-1 mRNA expression and AP-
1 transactivation
We further examined the effect of BPLE and TCA on MMP-1 mRNA expression, and both
BPLE and TCA reduced UVB-induced MMP-1 mRNA levels (Fig 2A and 2B). It has been re-
ported that AP-1 is a major transcription factor of UVB-induced MMP-1 expression [3, 31–
33]. To verify whether AP-1 mediates the effect of BPLE and TCA, AP-1 transactivation was
examined using HaCaT cells stably transfected with AP-1 luciferase plasmid. The results
showed that both BPLE and TCA attenuated UVB-induced AP-1 transactivation (Fig 2C and
2D) suggesting that AP-1mediates MMP-1 regulation by BPLE and TCA.

BPLE and TCA suppresses UVB-induced binding affinity of AP-1
residues
To identify which AP-1 residues are affected by BPLE and TCA, we measured binding affinity
of AP-1 subunits by TransAM AP-1 DNA-binding ELISA kit. The binding affinity of each sub-
unit phospho-c-Jun (Ser73), c-Fos, and Fra-1 was increased by UVB. Both BPLE and TCA in-
hibited UVB-induced p-c-Jun (Ser73), c-Fos, and Fra-1 DNA binding affinity (Fig 3A, 3B and
3C). The Western blot analysis confirmed that BPLE and TCA inhibited UVB-induced p-c-Jun
(Ser73, Fig 3D). Therefore, BPLE and TCA inhibit MMP-1 expression by reducing the DNA
binding affinity of AP-1 residues including c-Jun, c-Fos, and Fra-1.

BPLE and TCA inhibits PI3K activity in vitro
PI3K/Akt and MAPK cellular signal pathways play a crucial role in UVB-induced AP-1 trans-
activation [16, 34, 35]. We monitored the effect of BPLE and TCA on the phosphorylation of
PI3K/Akt and MAPK pathways. Our results revealed that BPLE and TCA suppressed Akt
phosphorylation (Fig 4A and 4B), but not MAPK including ERK, p90RSK, JNK, and p38
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(Fig 4C and 4D). Subsequently, we investigated whether PI3K, an upstream kinase of Akt,
could be targeted by BPLE and TCA. Indeed, we found that BPLE and TCA inhibited the ki-
nase activity of three isoform types of PI3K (p110α/p85α, p110β/p85α, and p110δ/p85α) in a
dose-dependent manner in vitro (Fig 5).

BPLE and TCA reduce collagen degradation and attenuate MMP-1
expression in a human skin equivalent model
To further investigate the anti-photoaging effect of BPLE and TCA in physiological conditions,
a human skin equivalent model was employed. The skin equivalent system was generated as

Fig 2. BPLE and TCA inhibit UVB-induced MMP-1mRNA expression and AP-1 transactivation in HaCaT cells. A and B, Cells were treated with BPLE
and TCA at the indicated concentrations for 1 h before being exposed to 0.01 J/cm2 of UVB and mRNA was collected 12 h later. MMP-1 mRNA expression
was analyzed as qRT-PCR. C and D, BPLE and TCA attenuated UVB-induced AP-1 transactivation in HaCaT cells. Cells were treated with BPLE and TCA at
the indicated concentration for 1 h before being exposed to 0.01 J/cm2 of UVB and cells were lysed 12 h later. AP-1 transactivation was measured using
Luciferase assay. All data are presented as the mean ±S.D. determined from three independent experiments. Means with different letters (a-c) within a graph
were significantly different from each other at p < 0.05.

doi:10.1371/journal.pone.0128365.g002
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described in the Materials and Methods (Fig 6A). To examine the effect of BPLE and TCA in
the skin equivalent system, UVB-induced collagen degradation and MMP-1 overexpression
were monitored after Masson’s trichrome staining and immunohistochemical staining, respec-
tively. Our results showed that BPLE (5, 10 μg/ml) and TCA (5, 10 μM) have a protective effect
against UVB-induced collagen degradation (Fig 6B and 6D) and MMP-1 overexpression (Fig
6C and 6E) in this model.

Fig 3. BPLE and TCA inhibit UVB-induced binding affinity of AP-1 residues in HaCaT cells. A, B, and C, DNA binding activity of phospho-c-jun (A), c-
Fos (B) and Fra-1 (C). Cells were treated with BPLE and TCA at the indicated concentrations for 1 h before being exposed to 0.01 J/cm2 of UVB and nuclear
extract was collected 4 h later. DNA binding activity was measured by TransAM AP-1 DNA-binding ELISA kit. Means with different letters (a-d) within a graph
were significantly different from each other at p < 0.05. D, Phosphorylated and total protein levels of c-Jun were measured byWestern blot assay. Relative
band intensity is expressed as fold of control and indicated on top of each band.

doi:10.1371/journal.pone.0128365.g003
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Discussion
An increasing number of studies have reported the health benefits of natural botanical com-
pounds, and recently their effects on skin health, especially skin aging, have been gaining a
great deal of interest. Recent studies show protective effects of various dietary polyphenols and
botanical extracts including citrus and rosemary extract [36], almond phytochemicals [37],
and coffee extract [38] against UV-induced photoaging. However, the molecular mechanism
underlying the photoprotective effects of the natural compounds has not been investigated in-
depth. To aid the utilization of naturally abundant and effective botanical sources as cosmetic
material, in-depth mechanistic studies and the identification of molecular targets as well as
clinical data should be considered.

Fig 4. BPLE and TCA inhibit UVB-induced Akt phosphorylation but not Mitogen-activated kinase (MAPK) signaling pathway in HaCaT cells. A-D,
Cells were treated with BPLE (A, C) and TCA (B, D) at the indicated concentration for 1 h before exposed to 0.01 J/cm2 of UVB and collected after 30 min.
Phosphorylated and total protein levels were analyzed byWestern blot assay. Relative band intensity is expressed as fold of control and indicated on top of
each band.

doi:10.1371/journal.pone.0128365.g004
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Fig 5. BPLE and TCA inhibit Phosphoinositide 3-kinase (PI3K) activity. A, B and C, PI3K activity was
measured by HTRF described in the Materials and Methods. PI3K isoforms, p110α/p85α (A), p110β/p85α
(B), and p110δ/p85α (C) were used for measuring activity. Means with different letters (a-d) within a graph
were significantly different from each other at p < 0.05.

doi:10.1371/journal.pone.0128365.g005
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Fig 6. BPLE and TCA decrease collagen degradation and MMP-1 expression in a human skin equivalent model A, A schematic diagram of the 3D
human skin cell culture system. The experimental procedure was described in the Materials and Methods. B and C, BPLE and TCA inhibit UVB-induced
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TCA and DAA are major compounds that increase in production as pine leaves changed
their color. Only TCA (and not DAA) exhibits inhibitory effects against UVB-induced MMP-1
expression. TCA represents a group of diterpenic acids with a labdane skeleton containing
three double bonds and a carboxyl group. There are five communic acids that differ in the loca-
tion of the double bonds and the orientation of the carboxyl group. Notably, TCA is the most
abundant communic acid found in nature. It is widely distributed in Cupresaceae species, espe-
cially in the genus Juniperus [39]. Previous studies have reported that it exhibits antimycobac-
terial [40], antitumoral [41, 42], anti-inflammatory, and antioxidant [43] activities. In this
study, we showed that TCA is a dominant compound in BPLE and exerts inhibitory effects on
UVB-induced MMP-1 expression, similar to BPLE. In addition, we showed that both BPLE
and TCA exert their effect through a similar molecular mechanism. Therefore we suggest that
TCA is the major active component that enhances the functionality of BPLE compared to PLE.

Both BPLE and TCA inhibit UVB-induced MMP-1 mRNA and AP-1 transactivation. AP-1
is a major transcription factor in UVB-induced MMP-1 expression [3, 31–33] and it binds to
the TPA-response element (TRE) and activates the transcription of target genes including
MMP-1 [20, 44]. AP-1 is composed of homodimers or heterodimers of Jun or heterodimers of
Jun-Fos proteins [23]. Both BPLE and TCA inhibited UVB-induced DNA binding activity of
c-Jun, c-fos and Fra-1. UVB-induced c-Jun phosphorylation is also inhibited by BPLE and
TCA treatment. MAPK and PI3K/Akt pathways are the major regulators of DNA binding ac-
tivity of AP-1 [45–48]. BPLE and TCA inhibited UVB-induced Akt phosphorylation, but not
MAPK phosphorylation. Therefore, it can be concluded that BPLE and TCA inhibit UVB-in-
duced MMP-1 expression via the PI3K/Akt pathway.

The PI3K/Akt pathway plays a crucial role in regulating various cellular processes including
inflammation and aging processes by modulating a number of genes [49]. PI3K generates
phosphatidylinositol (3,4,5)-trisphosphate (PIP3) at the plasma membrane. Akt binds PIP3
through its pleckstrin homology (PH) domain, resulting in translocation of Akt to the mem-
brane and is activated by phosphorylation though PDK1 and mTOR-rictor complex [50]. The
PI3K/Akt pathway is induced by UVB and mediates various cellular responses including
MMP-1 expression [49]. Therefore, blocking PI3K represents a potential strategy for prevent-
ing the harmful effects of UVB. In this study, we found that BPLE and TCA inhibit three
isoforms of PI3K (p110α/p85α, p110β/p85α, and p110δ/p85α). Therefore, inhibition of
UVB-induced Akt phosphorylation by BPLE and TCA stems from the inhibition of PI3K activ-
ity by BPLE and TCA. This also underlines the potential use of BPLE and TCA as pan-PI3K
inhibitors.

The human skin equivalent model is a type of three dimensional cell culture system, which
is suggested to overcome the limits of two dimensional cell culture systems. Three dimensional
cell culture systems are often used to study diseases such as netherton syndrome [51], ichthyo-
sis [52] and skin inflammation [53]. The model carries clinical relevance, and is free from
concerns for animal welfare. Our results show that UVB-induced collagen degradation and
MMP-1 expression decrease in the BPLE- and TCA-treated human skin equivalent. These re-
sults suggest the potential effectiveness of BPLE and TCA if used in a clinical setting.

In summary, our results demonstrated that BPLE has a stronger inhibitory effect on UVB-
induced MMP-1 expression than PLE in human keratinocytes, and that TCA, a major active

MMP-1 protein expression levels and collagen degradation. The serial sections, from the human skin equivalent, were mounted onto silane-coated slides
and subjected to Masson’s trichrome staining (B and D) or to immunohistochemical staining using anti-MMP-1 antibody (C and E). MMP-1 appears brown.
Relative density was measured using the ImageJ program. Means with different letters (a-d) within a graph were significantly different from each other at
p < 0.05.

doi:10.1371/journal.pone.0128365.g006
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component of BPLE, reproduces this effect of BPLE. BPLE and TCA attenuated UVB-induced
AP-1 transactivation and Akt phosphorylation through direct inhibition of PI3K activity. Fur-
thermore, the protective effect of BPLE and TCA against UVB-induced collagen degradation
and MMP-1 expression were confirmed in the human skin equivalent model. Clinical evidence
may further unveil its potential to be developed as a valuable cosmeceutical material.

Supporting Information
S1 Fig. Isolation and characterization of TCA from BPLE and PLE. BPLE and PLE (0.02 g)
was prepared in ethanol (80%). Isolation was conducted as described in Materials and Meth-
ods. BPLE appears as green and PLE is blue.
(TIF)

S2 Fig. Isolation and characterization of DAA from BPLE and PLE. BPLE and PLE (0.02 g)
was prepared in ethanol (80%). Isolation was conducted as described in Materials and Meth-
ods. BPLE appears as green and PLE is blue.
(TIF)

S3 Fig. A schematic diagram for the protective mechanism of BPLE and TCA against UVB-
induced skin photoaging.
(TIF)
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