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A B S T R A C T   

This study is aimed at preparing functional naproxen (NP)-incorporated biomaterials using mungbean starch, 
PVA, plasticizers, and melanin (MEL) nanoparticle. The biomaterials were characterized by FT-IR, FE-SEM and 
TGA. Their physical properties and antibacterial effects were also evaluated. Photothermal effects and NP release 
behavior were investigated using NIR laser irradiation. Results indicated that when compared to biomaterials 
without MEL, temperatures of MEL-added biomaterials were increased about 1.40 times when exposed to NIR 
laser for 30 min. NP release of NP-incorporated biomaterials at various temperatures and pH 5.5 was increased 
with increasing temperature. Results of NP release using artificial skin confirmed that NP was released contin-
uously for 180 min. When NIR laser was irradiated for 30 min, NP release of MEL-added biomaterials were 3.13 
times higher than that of biomaterials without MEL. NP release behavior at pH 5.5 followed a pseudo-Fickian 
mechanism, whereas it followed a non-Fickian mechanism in artificial skin.   

1. Introduction 

Biodegradable natural polymers-based materials have gained great 
attentions in the biomedical applications field as materials for fabrica-
tion of various devices [1–3]. Many studies have focused on replacing 
biocompatible polymers used for biomedical devices with biodegradable 
biomaterials using polysaccharides such as starch, glycogen, cellulose, 
and chitosan because of their biodegradability, biocompatibility, and 
affordability [4,5]. Starch consists of linear amylose and branched 
amylopectin, and it is mainly present in plants such as potatoes, corn, 
wheat, rice, cassava, mungbean, and tapioca. Owing to its advantages of 
biocompatibility, biodegradability, non-toxicity, and affordability, it has 
been applied a biomaterial in various fields including drug delivery 
systems, tissue engineering scaffolds, wound dressings, and bone 
replacement/fixation [6,7]. 

The delivery of drugs and bioactive substances through the skin is an 
attractive alternative that can minimize the side effect of oral 

administration. These methods are called transdermal drug delivery 
systems (TDDS) [8]. When compared to oral drug delivery, TDDS has the 
advantages of avoiding first-pass metabolism, increasing drug 
bioavailability, and reducing side effects without gastrointestinal dis-
orders. However, owing to the protective action of the stratum corneum 
present on the skin, the ability of low molecular weight (<500 Da) and 
lipophilic drugs to penetrate percutaneously by passive diffusion is 
restricted [9]. 

Functional biomaterials for TDDS used in this study were prepared 
using mungbean starch (MS) as the main component. Mungbean, which 
is a native plant of Southeast Asia, is widely grown not only in the U.S.A. 
but also Africa, South America, and Australia. The seeds with abundant 
protein (about 28%) contained a high amount of starch including high 
amylose content (30–45%) [10]. Our previous study corroborated the 
characterization and drug release properties of starch-based bio-
materials used in TDDS [11,12]. Additionally, there have been reports 
on the development of functional allopurinol mungbean starch-based 

* Corresponding authors. 
E-mail addresses: kimkj124@nate.com (K.-J. Kim), yhhumm@jnu.ac.kr (Y.-H. Yun), jjy1915@pknu.ac.kr (J.-Y. Je), dhkim@pknu.ac.kr (D.-H. Kim), hshwang33@ 

scnu.ac.kr (H.S. Hwang), yunsd03@jnu.ac.kr (S.-D. Yoon).   
1 These authors contributed equally to this work. 

Contents lists available at ScienceDirect 

Process Biochemistry 

journal homepage: www.elsevier.com/locate/procbio 

https://doi.org/10.1016/j.procbio.2023.03.034 
Received 17 January 2023; Received in revised form 27 March 2023; Accepted 30 March 2023   

mailto:kimkj124@nate.com
mailto:yhhumm@jnu.ac.kr
mailto:jjy1915@pknu.ac.kr
mailto:dhkim@pknu.ac.kr
mailto:hshwang33@scnu.ac.kr
mailto:hshwang33@scnu.ac.kr
mailto:yunsd03@jnu.ac.kr
www.sciencedirect.com/science/journal/13595113
https://www.elsevier.com/locate/procbio
https://doi.org/10.1016/j.procbio.2023.03.034
https://doi.org/10.1016/j.procbio.2023.03.034
https://doi.org/10.1016/j.procbio.2023.03.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procbio.2023.03.034&domain=pdf


Process Biochemistry 129 (2023) 268–280

269

biomaterials and their various properties, which comprise poloxamer as 
a temperature-sensitive polymer. The results indicated that poloxamer 
can increase the efficiency of drug release in functional biomaterials, 
demonstrating that stimulus-responsive substances in TDDS could 
improve skin permeability [13]. 

Numerous studies have used functional biomaterials that respond to 
various stimuli, such as pH, light, and temperature, to overcome the 
limitations of TDDS and improve the skin permeability of drugs [14–17]. 
Functional stimulus-responsive materials such as melanin (MEL), prox-
amer, poly(N-isopropylacrylamid), and black phosphorus are attracting 
attention in biomedical materials for various diseases treatment [18,19]. 
Of these functional stimulus-responsive materials, black phosphorus has 
excellent biodegradability, photothermal effect, and high specific sur-
face area, and is a new drug delivery material for cancer treatment. 
However, black phosphorus is highly reactive to oxygen and water, 
resulting in degradation under ambient conditions. To improve the 
stability of black phosphorus, surface modification, and covalent func-
tionalization methods were investigated. The problem with these 
methods is that they cause increased toxicity and decreased photo-
thermal effect [20–23]. In addition, among photothermal agents, 
melanin (MEL), a natural polyphenol produced by melanogenesis from 
melanocytes, is found in both the skin and hair. MEL has the advantages 
of biocompatibility, UV shielding, antioxidation, and non-toxicity. It can 
effectively absorb light with wide wavelengths, from ultraviolet to near 
infrared (NIR), and convert that energy into heat. Therefore, the pho-
tothermal effect of MEL has been widely applied in photothermal ther-
apy [24–26]. Heat can be applied locally to the skin to increase drug 
permeability while improving vascular perfusion [27,28]. In this study, 
we evaluated the control of drug release using the naproxen (NP) as an 
anti-inflammatory agent and investigated the enhancement of skin 
permeability of NP using the photothermal effect of functional bio-
materials with the addition of MEL. 

Inflammation, the reaction of the immune system to infections and 
injuries, is a series of biological mechanisms the body uses to inhibit 
harmful substances that have invaded tissues. The four main signs of an 
inflammatory response are rubor (redness), calor (heat), tumor 
(swelling), and dolor (pain). The general inflammatory response is 
characterized by a temporally restricted upregulation of inflammatory 
activity that occurs only in the presence of a threat. As the stimuli 
brought on by harmful substances are removed via phagocytosis, the 
inflammatory response gradually diminishes. During inflammation 
resolving, granulocytes are removed, and macrophages and lympho-
cytes return to normal pre-inflammatory levels and phenotypes [29–31]. 
However, when inflammation becomes uncontrolled and enters the 
acute phase, inflammatory macrophages increase rapidly, resulting in 
tissue or organ damage. Therefore, if this acute inflammation is not 
resolved, it can cause autoimmunity, chronic dysplastic inflammation, 
and cancer [32,33]. 

NP is one of the nonsteroidal anti-inflammatory medications used to 
treat a wide range of inflammation, fever, and pain. It is also used to 
treat diseases such as osteoarthritis, rheumatoid arthritis, gout, men-
strual cramps, and migraine [34,35]. The primary mechanism of NP 
action is to reversibly and competitively inhibit cyclooxygenase-1 
(COX-1) and cyclooxygenase-2 (COX-2), thereby preventing the con-
version of arachidonic acid to the pro-inflammatory prostaglandins 
(PG). PG synthesis Inhibition is important in the regulation of inflam-
mation because PG biosynthesis is significantly increased in inflamma-
tory tissues and contributes to acute inflammation [32,36]. Although NP 
is highly effective, the oral formulation has side effects such as nausea, 
heartburn, acid dyspepsia, gastrointestinal bleeding, and gastric ulcer 
[37,38]. Therefore, the development of a drug delivery platform that 
maintains medicinal efficacy while minimizing these side effects is 
required. 

In this study, we prepared functional NP-incorporated MS-based 
biomaterials using PVA, plasticizer (glycerol (GL), and L-arginine (AG)) 
for treating inflammation. We also investigated the NP release 

properties of the prepared biomaterials. In addition, MEL was used as a 
photothermal agent for the treatment of acute inflammation by 
enhancing drug release efficiency. The photothermal conversion effect 
and NP release properties of the prepared functional biomaterials with/ 
without the addition of MEL were evaluated using NIR laser irradiation. 
The NP release mechanism was determined using well-known diffusion 
models (Fickian and non-Fickian diffusion models). To verify the 
applicability of TDDS, the release properties of the prepared functional 
biomaterials were also confirmed using an artificial skin test. 

2. Materials and methods 

2.1. Materials 

Naproxen (NP), polyvinyl alcohol (PVA, 99% hydrolyzed; number 
average molecular weight = 89,000–98,000), glycerol (GL), L-arginine 
(AG), and melanin (MEL) as a photothermal agent were purchased from 
Sigma-Aldrich Chemical Company, Inc. (St. Louis, MO, USA). Mungbean 
starch (MS) was obtained from Chungwon food, Inc. (Incheon, South 
Korea). Distilled water (DW) was redistilled after deionization and used 
in all experiments. 

2.2. Preparation of functional NP-incorporated mungbean starch-based 
biomaterials 

Functional NP-incorporated MS-based biomaterials were prepared 
using the casting method and UV curing process. First, MS and plasti-
cizers (GL and AG) were mixed in DW for 30 min. The PVA solution was 
prepared by dissolving PVA in hot DW (95 ◦C). Subsequently, both so-
lutions were mixed and maintained at 95 ◦C for 15 min. Using a me-
chanical stirrer (400 rpm) the mixture was blended for 60 min at room 
temperature to prepare a homogeneous gel-like solution. The imprinting 
of NP and/or incorporation of MEL progressed during the blending 
process. After dissolving NP and/or MEL in DW, these solutions were 
added dropwise for uniform recognition and dispersion into the gel-like 
solution. The chemical compositions of the functional starch-based 
biomaterials are shown in Table 1. An aspirator was used to remove 
bubbles from the homogeneous gel-like solution before it was poured 
onto a preheated Teflon mold (40.0 ◦C; 250 × 250 × 1 mm). The mold 
was dried using a ventilated oven at 40.0 ◦C for 24 h. These prepared 
MS-based biomaterials were cured for 10, 20, 30, 40, 50, and 60 min 
under an atmospheric pressure UV lamp (OSRAM ULTRA-VITALUX, 
300 W). 

2.3. Water resistance properties 

The swelling behavior (SB) and solubility (S) were measured to 
evaluate the water resistance properties of the starch-based bio-
materials. The prepared biomaterials were immersed in DW at 25.0 ◦C. 
The surface moisture of biomaterials was removed after 24 h, when 
equilibrium had been attained, and the weight of each biomaterial was 
measured. The SB of each biomaterial was computed using the following 
equation (Eq. (1)): 

Table 1 
Component of functional NP-incorporated starch-based biomaterials.  

Sample name MS 
(g) 

PVA 
(g) 

AG (% 
wt) 

GL (% 
wt) 

NP 
(g) 

MEL 
(mg) 

DW 
(g) 

MSP  5.0  5.0 - - - -  100 
MSPNP  5.0  5.0 - - 0.5 -  120 
MSPAGNP  5.0  5.0 40 - 0.5 -  120 
MSPGLNP  5.0  5.0 - 40 0.5 -  120 
MSPMELNP  5.0  5.0 - - 0.5 5  120 
MSPAGMELNP  5.0  5.0 40 - 0.5 5  120 
MSPGLMELNP  5.0  5.0 - 40 0.5 5  120  
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Swelling behavior(SB) =
(We − W0)

W0
(1) 

where We is the weight of the swelling biomaterial at equilibrium, 
and W0 is the initial weight of the dried biomaterial. 

The swollen biomaterials were dried again at 50.0 ◦C for 24 h. The S 
value of each biomaterial was computed using the following equation 
(Eq. (2)): 

Solubility(S) =
(W0 − Wd)

Wd
(2) 

where W0 is the initial weight of the dried biomaterial and Wd is the 
dry weight of the swollen biomaterial. 

2.4. Mechanical properties 

The tensile strength (TS) and elongation at break (%E) of the pre-
pared starch-based biomaterials were investigated using the Instron 
6012 testing machine (Norwood, MA, USA). Six dumbbell-shaped 
specimens (ASTM D-412) were cut out of the prepared biomaterials. 
The thickness of the prepared biomaterials was measured thrice using a 
mechanical scanner (Digital thickness gauge “Mitutoyo” Tokyo, Japan) 
around the biomaterials, and their average thickness was 0.122 
± 0.004 mm. The gauge length and grip distance were both 53.0 mm. 
The crosshead speed was set at 20 mm/min, and the load cell capacity 
was 250 kgf. All tests were performed at 25 ◦C with 58.0% RH. 

2.5. Characterization 

The surface and cross-section of the prepared MS-based biomaterials 
with/without NP, MEL, and plasticizers were analyzed by field emission 
scanning electron microscopy (FE-SEM, ZEISS Sigma 500, Carl Zeiss Co., 
Ltd, Germany) at an acceleration voltage of 5.0 kV. Fourier transform 
infrared spectrophotometry (FT-IR) analysis of NP, MEL, and prepared 
biomaterials was performed using an FT-IR spectrophotometer (vertex- 
70, Bruker, Germany). 

2.6. Evaluation of antimicrobial activities 

To determine antimicrobial activities of biomaterials, 2 types of 
Gram-positive bacteria (Staphylocccus aureus ATCC29213 and Staph-
ylocccus epidermidis TMPSB-D10) and 3 types of Gram-negative bacteria 
(Escherichia coli ATCC25922, Edwardsiella tarda ATCC15947, and Sal-
monella enterica ATCC7001) were used. Nutrient broth was used to grow 
bacteria at 37 ◦C. The antibacterial effect of the biomaterials was 
determined using an agar plate method. A bacterial suspension (107 – 
106 CFU/mL) was evenly spread on the Tryptic Soy Agar plates, followed 
by placing sterilized the biomaterials. The plates were then incubated at 
37 ◦C for 18–36 h. The antibacterial effect of the films was assessed by 
checking the growth of bacteria under the biomaterials. 

2.7. Photothermal conversion effects 

To evaluate the photothermal conversion effect of the functional 
starch-based biomaterials with MEL, the prepared biomaterials were 
irradiated with an 808 nm NIR laser (LAB808CW-4 W-f400, Laserlab 
Co., Seoul, Korea) at a power density of 1.5 W/cm2 for 30 min [39]. The 
temperature variations of the prepared biomaterials were observed 
every 10 min using an infrared thermal camera (C2, FLIR System Inc., 
Sweden). 

2.8. Thermogravimetric measurements 

Thermogravimetric measurements for prepared biomaterials were 
performed using a DSC Q200/TGA Q50 (TA Instruments, USA) from 25◦

to 600◦C in a N2 environment (flow rate, 20 mL/min) at a heating rate of 

10 ◦C/min. The sample weight was between 10.0 and 11.0 mg. 

2.9. NP release properties 

The NP release from the functional NP-incorporated starch-based 
biomaterials was estimated under various temperatures (32.0 ◦C for cold 
skin temperature, 36.5 ◦C for natural skin temperature, and 40.0 ◦C for 
inflammatory temperature) and pH 5.5 buffer solution as a human skin 
condition [40,41]. The NP-incorporated biomaterials (0.10 g) were 
immersed in flasks containing 30 mL buffer solution. These flasks were 
incubated in a shaking incubator (VS-8480SF, Vision, Scientific Co., 
Korea) at 50 rpm and 32.0, 36.5, or 40.0 ◦C. The release medium was 
collected at a predetermined time and released NP was measured using a 
UV–vis spectrophotometer (OPTIZEM 2120UV, Neogen, Co., Ltd, Korea) 
at 329 nm. These cumulative concentrations (%) of released NP were 
calculated using a standard calibration curve. The possibility of using 
the prepared biomaterials as TDDS was also verified via a drug release 
test using artificial skin (Neoderm-ED, Tego science, Inc. Korea). The 
prepared NP-incorporated biomaterials (2.0 × 2.0 cm) were placed on 
artificial skin mixed with agar-based gel at 36.5 ◦C and RH 60.0%. 
Thereafter, agar-based gel was then immersed in DW at 25 ◦C for 8 h. 
The NP release was quantified using a UV–vis spectrophotometer. 
Furthermore, based on the specific photothermal effect of MEL, the 
improvement of drug release efficiency of the functional 
NP-incorporated MS-based biomaterials as a result of MEL addition was 
confirmed using 808 NIR laser irradiation. The prepared biomaterials 
were investigated via an artificial skin test (36.5 ◦C and RH 60.0%.) 
with/without 808 nm NIR laser irradiation at a power density of 
1.5 W/cm2 for 30 min 

To verify the drug delivery mechanism, Fickian diffusion and 
empirical models were calculated. Fick’s law can be used to estimate the 
diffusion coefficient of a targeted drug in a macromolecular system (Eq. 
(3)) [42,43]. 

∂C
∂t

= D
∂2C
∂x2 (3)  

where C is the diffusion molecule concentration at time t and D is the 
constant diffusion coefficient. 

In the thin polymer slab, the solution of Eq. (3) is rearranged in the 
form of a trigonometric series and can be expressed as follows: where, if 
diffusion of a drug in the x direction occurs in a polymer slab of thickness 
l ( − l

2 < x < l
2), the appropriate boundary conditions are 

c(t = 0, x);
∂c
∂t

(t, x = 0);C
(

t, x =
l
2

)

= Ceq (4) 

In Eq. (4), Ceq is the final equilibrium concentration of drug diffusion. 
Using these conditions in the thin polymer slab, Eq. (3) is rearranged in 
the form of a trigonometric series, and can be expressed as Eq. (5). 

C(t, x)
Ceq

= 1 −
4
π
∑∞

n=0

(− 1)n

2n + 1
exp(

− D(2n + 1)2π2t
l2 )cos(

(2n + 1)πx
l

) (5) 

Integrating Eq. (5) is expressed as Eq. (6), which is known as the 
Fickian diffusion model [44,45]. 

Qt

Q∞
= 1 −

∑∞

n=0

8
(2n + 1)2

• π2
exp

[

−
De • (2n + 1)2π2

l2 • t

]

(6)  

where Qt is the amount of drug released at time t, Q∞is the amount of 
drug released at infinite time, l is the half thickness of the slab, and t is 
the diffusion time, and De is diffusion coefficient. 

The empirical model is also expressed as follows (Eq. (5)) [46,47]: 

Qt

Q∞
= ktn (7)  
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where k is the drug release constant and n is the diffusional exponent, 
indicative of the mechanism of drug release. In the case of n < 0.5, the 
release behavior indicates a pseudo-Fickian diffusion mechanism. A 
value of n = 0.5 implies a Fickian diffusion mechanism, and values of n 
between 0.5 and 1.0 are related to a non-Fickian diffusion mechanism 
[48,49]. 

2.10. Statistical analysis 

All experiments were performed in triplicate (n = 3). The test results 
are expressed as mean ± standard deviation (SD). The experimental 
results of this study were evaluated for statistical significance via t-test 
(p < 0.05) with repeated experiments. 

3. Results and discussion 

3.1. Physical properties of functional MS-based biomaterials 

Evaluation of swelling behavior (SB) and solubility (S) is crucial for 
confirming the water resistance of biomaterials and the degree of 
crosslinking between their components. To ascertain the optimal UV 
curing conditions for the MS-based biomaterials, the SB and S of the 
prepared biomaterials were evaluated with various UV curing times.  
Fig. 1a and b show the results of SB and S of the MS-based biomaterials 
with/without the addition of plasticizers (AG and GL) prepared by UV 
curing. The SB and S values of the prepared biomaterials decreased as 
the UV curing time increased. These results imply that the water resis-
tance and the degree of crosslinking of the prepared biomaterials by UV 

curing were improved. However, when UV curing time was more than 
30 min, the SB and S values did not change significantly. Therefore, the 
functional MS-based biomaterials were prepared by setting the optimal 
UV curing condition to 30 min. Biomaterials with AG and GL had a 
decrease in SB, whereas the biomaterials with only GL had the lowest SB 
values and the highest S values. These results indicate that the binding 
strength was relatively weak because there were few functional groups 
capable of hydrogen bonding in the GL-added biomaterials among the 
prepared biomaterials. 

The mechanical properties of starch-based biomaterials are impor-
tant factors for applications in various biomedical engineering fields. 
The results of TS and %E for the prepared biomaterials with/without the 
addition of NP, MEL, and plasticizers (AG and GL), in which the UV 
curing process was performed for 30 min, are shown in Fig. 1. c and d. 
The results reveal that the TS and E% of the biomaterials with MEL were 
not significantly different from those of biomaterials without MEL. 
When AG or GL was added to the MS-based biomaterials, the TS values 
were lower than those of biomaterials without of AG or GL, whereas the 
%E values of biomaterials without the AG or GL were higher than those 
of the biomaterials without AG or GL. However, the addition of NP did 
not significantly affect the mechanical properties of the prepared 
biomaterials. 

3.2. Characterization 

To verify the stability of NP and the functional prepared NP- 
incorporated MS-based biomaterials via UV irradiation, UV irradiated 
NP and biomaterials were analyzed by FT-IR. The results of the FT-IR 

Fig. 1. Physical properties of starch-based biomaterials with UV curing. (a) Swelling behavior of starch based biomaterials with various UV curing time. (b) Sol-
ubility of starch based biomaterials with various UV curing time. (c) Tensile strength (TS) and elongation at break (%E) of starch based biomaterials with/without the 
addition of NP and plasticizers. (d) TS and %E of starch based biomaterials with/without the addition of NP, MEL and plasticizers. 
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analysis for the stability of NP before and after UV curing are shown in  
Fig. 2a. A sharp peak at 1585 cm− 1 corresponded to COO-, which is a 
characteristic functional group peak of NP, and peaks at 3059 and 
2910 cm− 1 corresponded to aromatic C-H and aliphatic C-H stretching, 
respectively [50,51]. In the FT-IR spectra of MEL (see Fig. 2b), a broad 
absorption band at 3224 cm− 1 for OH stretching, a peak at 1704 cm− 1 

due to carbonyl group vibration, and a strong peak at 1609 cm− 1 related 
to aromatic ring C––C were confirmed [52,53]. Therefore, the FT-IR 
spectra of NP and MEL revealed that UV curing did not deform their 
structures under the preparation condition of functional biomaterials. 
Fig. 2c shows the FT-IR spectra of the prepared biomaterials with/-
without the addition of NP. Peaks at 849, 925, and 1146 cm− 1 were 
associated with the -C-O-C- ring vibration of granular starch, and the 
strong peak at 1018 cm− 1 corresponded to the characteristic peak of 
anhydrous starch ring O-C stretch. Absorption bands at 1329 and 
1414 cm− 1 due to bending vibration of -CH in -CH2OH were observed 
[54]. The biomaterials with AG peaked around near 1632 cm− 1, which 
is a characteristic peak for the guanidine group of AG [55]. The broad 
absorption bands of 2921 and 3275 cm− 1 in the biomaterials with GL 
were attributed to the hydroxyl group of GL. Results of FT-IR analysis of 
the NP-incorporated biomaterials indicated that the specific peaks of NP 
appeared at 1563–1592 cm− 1. However, characteristic peaks of MEL 

were not verified because of overlapping, similarities of chemical 
structures, and the small amount of MEL. 

Fig. 3 shows the results of FE-SEM images for the surface and cross- 
section analysis of the prepared functional biomaterials. The prepared 
biomaterials were generally uniform without noticeable porosity, crack, 
or flaw. Furthermore, the biomaterial surface and cross-sectional char-
acteristics were not influenced by the UV curing process. Fig. 3(e – h) 
show that the MEL-added biomaterials have a darker color than those of 
biomaterials without the addition of MEL because MEL has a black or 
brown color. 

3.3. Antimicrobial activities 

The antibacterial effect of the biomaterials was evaluated, and the 
results are shown in Fig. 4 and Table 2. From the results, it could be 
found that no antibacterial effect for Gram-negative bacteria of the 
biomaterials was observed. Whereas, the biomaterials showed the 
antibacterial effect against S. aureus and S. epidermidis. Among them, 
MSPGLNP and MSPGLMELNP weakly inhibited the growth of S. aureus 
with the concentration of 106 and 107 CFU/mL. In addition, MSPGLNP, 
MSPGLMELNP, and MSPAGMELNP films also showed the growth 
inhibitory effect for S. epidermidis with the concentration of 106 and 107 

Fig. 2. FT-IR spectra of NP, MEL and functional NP-incorporated biomaterials. (a) FT-IR spectra of NP with/without UV curing. (b) FT-IR spectra of MEL with/ 
without UV curing. (c) NP-incorporated biomaterials with/without the addition of NP, MEL, and plasticizers. 
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CFU/mL. Results indicated that there were no significant antibacterial 
activities for all biomaterials. However, it can be confirmed the stability 
of the prepared biomaterials against Gram-positive and Gram-negative 
bacteria. 

3.4. Photothermal conversion effects 

MEL has a harmless and excellent photothermal conversion effect. To 
determine whether the MEL, which was introduced as a photothermal 

Fig. 3. FE-SEM images of surfaces and cross-sections of functional biomaterials. (a) starch-based biomaterials without the addition of NP, MEL, and plasticizers. (b) 
NP-incorporated starch-based biomaterials. (c) AG-added NP-incorporated starch-based biomaterials. (d) GL-added NP-incorporated starch-based biomaterials. (e) 
MEL-added starch-based biomaterials without the addition of NP and plasticizers. (f) MEL-added NP-incorporated starch-based biomaterials. (g) MEL-added NP- 
incorporated starch-based biomaterials with the addition of AG. (h) MEL-added NP-incorporated starch-based biomaterials with the addition of GL. 

Fig. 4. Antimicrobial activities of the prepared biomaterials.  
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agent, increased heating efficiency, we irradiated the prepared bio-
materials with a NIR laser for 30 min. As shown in Fig. 5, it could be 
verified that the temperature of MEL particles increased drastically to 
about 60.0 ◦C within 30 min after NIR laser irradiation. In addition, the 
temperature of MEL added-biomaterials without the addition of NP and 
plasticizers and MEL-added biomaterials with NP increased rapidly and 
reached about 39.0 ◦C within 30 min. However, the biomaterials 
without MEL increased only by about 3.4 ◦C. In the case of the bio-
materials with AG/GL and MEL, the temperature increased more 
rapidly, and the biomaterials reached 40.5 and 41.1 ◦C, respectively, 
within 30 min. The temperature of the biomaterials with AG/GL was 
higher than that of the biomaterials without plasticizers because the 
functional groups of AG and GL could provide higher photothermal 
conversion efficiency by generating intermolecular interactions and 
creating a large free volume inside the biomaterials [56,57]. The in-
crease in skin temperature due to heating can enhance permeability and 
blood flow of the skin, and heating to 42.0 – 43.0 ◦C does not cause pain 
or damage to the skin [58,59]. Therefore, these results demonstrated 
that the prepared functional biomaterials with MEL have a photo-
thermal conversion effect and suggested that the drug release of the 
biomaterials can be improved in TDDS. 

3.5. Thermogravimetric analtysis 

Fig. 6 shows the results of thermogravimetric analysis (TGA) of 
prepared biomaterials. Three phases of weight loss were confirmed for 
the prepared biomaterials. The first weight loss (25–224 ◦C) is related to 
the evaporation of adsorbed and bound water molecules to the bio-
materials. The second weight loss associated with the thermal decom-
position of the compounds in the biomaterials occurred in the range of 
224–322 ◦C. The weight loss continued with the temperature increased 
up to 550 ◦C. In addition, biomaterials with the addition of NP was 
lowered the degradation temperature in the first phase because the 
thermal decomposition of NP begins at 200 ◦C. The MEL-added bio-
materials slightly reduced the weight loss in the third phase. These re-
sults are because MEL could improve the thermal stability of 
biomaterials [60,61]. Since plasticizers are particularly sensitive to 
thermal degradation, the weight loss of AG- or GL-added biomaterials 
was higher than that of biomaterials without the addition of plasticizers 
[62]. 

3.6. NP release properties 

Fig. 7 shows the results of NP release ratio (%) from functional NP- 
incorporated biomaterials with/without MEL, plasticizers (AG and 
GL), and NIR laser irradiation at various temperatures (32.0, 36.5, and 
40.0 ◦C) in pH 5.5 buffer solution. Figs. 7a, 7b, and 7c show the NP 
release ratio (%) of the NP-incorporated biomaterials with/without 
plasticizers and without NIR laser irradiation. Results indicated that NP 
was rapidly released until 15 min and then reached equilibrium within 
30 min. In addition, the degree of NP releases increased as the 

temperature increased from 32.0 ◦C to 40.0 ◦C. Results of NP release of 
the prepared NP-incorporated biomaterials were obtained based on the 
type of plasticizer added to biomaterials in the following order: 
MSPGLNP > MSPAGNP > MSPNP. These results are related to the weak 
interaction between the biomaterials components and NP due to the 
lower physical properties of biomaterials with GL than other prepared 
biomaterials. 

Figs. 7d, 7e, and 7f show the NP release ratio (%) for NP- 
incorporated biomaterials with MEL, with/without the addition of AG 
and GL, and with NIR laser irradiation. Results indicated that the NP 
release was increased by about 1.2 – 1.3 times with NIR laser irradiation 
because of the photothermal conversion effect. Additionally, the degree 
of NP release at 40.0 ◦C was found to be lower than those at 32.0 ◦C and 
36.5 ◦C. This is could be because the maximum increase in temperature 
by NIR laser irradiation for 30 min is about 38.5 – 41.0 ◦C (see Fig. 5b). 

Understanding the drug release mechanisms in drug-incorporated 
biomaterials and mathematically modeling experimental data are 
crucial for their potential applications as TDDS. Thus, we investigated 
the NP release mechanism using Fickian diffusion and empirical models 
to systematically elucidate the NP release behavior of the functional NP- 
incorporated biomaterials. 

Fig. 7 and Table 3 show the comparison results after the mathe-
matical modeling (Fickian diffusion and empirical model) of the NP 
release behavior of the prepared NP-incorporated biomaterials with/ 
without plasticizers (AG and GL), MEL, and NIR laser irradiation at 
various temperatures in pH 5.5 buffer solution. 

Figs. 7a, 7b, and 7c (long dash line and solid line) show the Fickian 
diffusion and empirical modeling results for the verification of NP 
release behavior from the AG and GL-added NP-incorporated bio-
materials without MEL and NIR laser irradiation. Results indicated that 
the NP release behavior using the Fickian diffusion model was more 
suitable than those using the empirical model. In addition, the diffusion 
coefficient (De) values increased with increasing temperature (see 
Table 3). The De values of NP-incorporated biomaterials with AG and GL 
were higher than those of the NP-incorporated biomaterials without 
plasticizers. The De of the NP-incorporated biomaterials with GL had the 
highest values at various temperatures. Additionally, the result of the 
Fickian diffusion (long dash line) and empirical modeling (solid line) for 
the verification of NP release behavior from AG and GL-added NP- 
incorporated biomaterials with MEL and NIR laser irradiation are shown 
in Figs. 7d, 7e, and 7f. When compared to the calculation results of the 
Fickian diffusion and empirical model, the same trends were observed in 
previous results. In addition, it could be confirmed that the De values of 
NP release rates for the prepared NP-incorporated biomaterials with 
MEL were 1.10 – 1.25 times higher than those of the prepared NP- 
incorporated biomaterials without MEL. The empirical modeling re-
sults show that the diffusional exponents (n) of the prepared NP- 
incorporated biomaterials were less than 0.5. These results revealed 
that NP release behavior followed a pseudo-Fickian diffusion 
mechanism. 

Table 2 
Antibacterial effect of functional NP-incorporated starch-based biomaterials against some pathogenic bacteria.  

Sample S. epidermidis S. aureus E. coli E. tarda S. enterica 

36 h* 106–7 CFU/mL 18 h 106 CFU/mL 18 h 107 CFU/mL 36 h 106–7 CFU/mL 18 h 106–7 CFU/mL 36 h 106–7 CFU/mL 36 h 106–7 CFU/mL 

MSP - - - - - - - 
MSPNP - - - - - - - 
MSPGLNP + - + + - - - 
MSPAGNP + - - - - - - 
MSPMELNP - - - - - - - 
MSPGLMELNP + - + + - - - 
MSPAGMELNP - - - - - - - 

(+) susceptibility (weak inhibitory activity) 
(-) absence of susceptibility 
* Antibacterial assay condition 
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3.7. NP release properties using an artificial skin test 

To verify the applicability of the functional NP-incorporated bio-
materials for treating inflammation as TDDS, NP release properties were 
investigated at pH 5.5, 36.5 ◦C, and RH 60% using artificial skin. 

NP release profiles of the NP-incorporated biomaterials without NIR 
laser irradiation and with/without MEL and plasticizers (AG and GL) 
using an artificial skin are shown in Fig. 8. Results indicated that cu-
mulative concentrations of NP release for the prepared NP-incorporated 
biomaterials were increased at a relatively steady rate for 180 min. In 
addition, the NP release ratios (%) of biomaterials with/without the 
addition of MEL were almost identical during release times. However, 
the difference in NP release degrees was revealed depending on the type 

of plasticizers in the following increasing order: NP-incorporated 
biomaterial with GL > NP-incorporated biomaterial with AG > NP- 
incorporated biomaterial without plasticizers. The results could be 
attributed to the water resistance properties of the prepared bio-
materials with plasticizers in DW. The results of water resistance prop-
erties such as SB and S revealed that the water resistance properties of 
the prepared biomaterials with AG and GL were relatively lower than 
those of the biomaterials without plasticizers because AG and GL have 
high solubility in DW (see Fig. 1b). Therefore, the relatively high NA 
release of NA-incorporated biomaterials can be attributed to the flexi-
bility and decomposition of biomaterial chains by DW in the prepared 
complex biomaterials. The simulated results by the Fickian diffusion and 
empirical model are shown in Table 4. The results of the calculated De 
values using the Fickian diffusion model indicated that the NP release 
rate was in the following order: MSPGLMELNP (1.464E-11) > MSPGLNP 
(1.456E-11) > MSPAGMELNP (1.387E-11) > MSPAGNP (1.379E-11) 
> MSPMELNP (1.330E-11) > MSPMELNP (1.324E-11). The results 
revealed that there was no significant difference between the MEL and 
NP release rates as a result of the addition of plasticizers (AG and GL). In 
addition, these results of NP release using artificial skin indicated that 
the NP release evaluated using the empirical model was more suitable 
than that with the Fickian diffusion model. Furthermore, because the n 

Fig. 5. Photothermal conversion effect of functional NP-incorporated bio-
materials. (a) Thermal images of NP-incorporated biomaterials with/without 
the addition of MEL or plasticizers under 808 nm NIR laser irradiation (1.5 W/ 
cm2, 30 min). (b) Photothermal heating curves of NP-incorporated biomaterials 
with/without the addition of MEL or plasticizers under 808 nm NIR laser 
irradiation (1.5 W/cm2, 30 min). 

Fig. 6. TGA of the prepared biomaterials. (a) TGA curves of the functional 
biomaterials without the addition of MEL. (b) TGA curves of the MEL-added 
functional biomaterials. 
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values of the empirical model parameter were greater than 0.5 for the 
prepared NP-incorporated biomaterials regardless of the addition of 
plasticizer, the NP release properties using artificial skin followed a non- 
Fickian diffusion mechanism. 

Fig. 9 shows the results of comparing the NP release behavior with 
NIR laser irradiation for 30 min of the prepared NP-incorporated bio-
materials with/without the addition of MEL. In the case of the prepared 
NP-incorporated biomaterials without MEL, the NP release ratio (%) 

Fig. 7. NP release properties of NP-incorporated biomaterials at various temperatures and pH 5.5 buffer solution. (a-c) NP release (%) from NP-incorporated 
biomaterials without the addition of MEL and NIR laser irradiation. (d-f) NP release (%) from MEL-added NP-incorporated biomaterials using NIR laser irradia-
tion. The symbols represent experimental data and the long dash line (Fickian) and solid line (empirical) depict model prediction. 

Table 3 
Fickian diffusion and empirical model parameters of NP release from NP-incorporated biomaterials and from MEL-added NP-incorporated biomaterials with NIR laser 
irradiation at various temperatures and pH 5.5.  

Fickian diffusion model  

MSPNP MSPAGNP MSPGLNP 

T(℃) 32.0 36.5 40.0 32.0 36.5 40.0 32.0 36.5 40.0 
Q∞ 105.670 101.743 101.764 105.758 101.761 101.773 105.853 101.764 101.785 
De 1.248 E-10 1.502 E-10 1.664 E-10 1.297 E-10 1.646 E-10 1.813 E-10 1.458 E-10 1.852 E-10 2.036 E-10 
R2 0.993 0.990 0.993 0.995 0.992 0.994 0.997 0.997 0.997 
Empirical model  

MSPNP MSPAGNP MSPGLNP 
T(℃) 32.0 36.5 40.0 32.0 36.5 40.0 32.0 36.5 40.0 
Q∞ 131.036 137.325 147.394 138.925 145.834 155.070 186.963 194.505 206.637 
k 0.201 0.211 0.224 0.211 0.224 0.236 0.188 0.198 0.210 
n 0.405 0.379 0.341 0.373 0.345 0.312 0.319 0.295 0.259 
R2 0.841 0.833 0.857 0.854 0.866 0.861 0.859 0.853 0.839 
Fickian diffusion model  

MSPMELNP MSPAGMELNP MSPGLMELNP 
T(℃) 32.0 36.5 40.0 32.0 36.5 40.0 32.0 36.5 40.0 
Q∞ 105.867 101.772 101.784 102.081 101.780 101.791 102.130 101.788 101.814 
De 1.486 E-10 1.644 E-10 1.811 E-10 1.694 E-10 1.801 E-10 1.926 E-10 1.891 E-10 2.021 E-10 2.164 E-10 
R2 0.991 0.991 0.992 0.994 0.994 0.994 0.997 0.997 0.994 
Empirical model  

MSPMELNP MSPAGMELNP MSPGLMELNP 
T(℃) 32.0 36.5 40.0 32.0 36.5 40.0 32.0 36.5 40.0 
Q∞ 120.921 127.671 136.988 148.803 149.457 152.518 150.843 152.410 157.329 
k 0.172 0.181 0.371 0.229 0.240 0.277 0.286 0.269 0.234 
n 0.378 0.351 0.236 0.333 0.319 0.296 0.253 0.281 0.322 
R2 0.839 0.853 0.824 0.852 0.831 0.847 0.835 0.828 0.826  
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gradually increased for 30 min to about 22.0 – 32.2% (see Fig. 9a). 
Fig. 9b presents the results of the NP release ratio (%) from MEL-added 
NP-incorporated biomaterials with NIR laser irradiation for 30 min. 
When compared to the biomaterials without NIR laser irradiation, there 
was no significant difference in NP release. However, when irradiated 
with a NIR laser, the NP release ratio (%) of biomaterials with MEL 
rapidly increased to 93.1 – 94.5% for 30 min. In addition, the NP release 

ratio (%) of the NP-incorporated biomaterials with MEL was about 3.0 – 
3.2 times higher than that without the addition of MEL. These results 
were attributed to the effective penetration of NP into artificial skin 
owing to the heat generated by the photothermal effect of MEL. Fig. 9c 
shows the NP release properties from MEL-added NP-incorporated bio-
materials when NIR laser was irradiated using an on/off running at 5- 
minute intervals for 30 min. Results indicated that NP release was 
increased step by step by on/off running of NIR laser irradiation. In 
addition, it could be confirmed that NP release increased about 2.0–2.5 
times when NIR laser was irradiated. Table 5 presents the calculated 
results using the Fickian diffusion and empirical model. These results 
revealed that the NP release properties with NIR laser irradiation using 
the empirical model were more satisfactory than those using the Fickian 
diffusion model. In addition, the n values of the NP-incorporated bio-
materials with NIR laser simulated by the empirical model were greater 
than 0.5, confirming that the NP release properties with NIR laser using 
artificial skin followed a non-Fickian diffusion mechanism. These results 
indicated that the functional NP-incorporated biomaterials had the po-
tential for TDDS and confirmed that they could be used to treat acute 
inflammation with controlled drug release using the photothermal 
effect. 

4. Conclusions 

Functional naproxen (NP)-incorporated biomaterials comprising MS, 
PVA, MEL, and plasticizers (AG and GL) were successfully prepared 
using the casting method and UV curing process. From the investigation 
of SB and S in DW, it was found that the optimal UV curing time for the 
preparation of the NP-incorporated biomaterials was 30 min. In addi-
tion, the chemical structure, surface morphology, and cross-section 
morphology of the prepared biomaterials were characterized by FT-IR, 
FE-SEM and TGA analysis. The evaluation of photothermal conversion 
efficiencies of the prepared biomaterials with/without MEL was con-
ducted under 808 NIR laser irradiation at 1.5 W/cm2. The results 
confirmed that the change in temperature of the biomaterials with MEL 
was about 1.35 – 1.46 times higher than those of biomaterials without 
the addition of MEL. To apply TDDS for treating inflammation, the NP 
release properties were evaluated at various temperatures at pH 5.5. 
Results indicated that the NP release ratio (%) increased with increasing 
temperature. In addition, the results of applying a mathematical model 
of NP release behavior demonstrated that the Fickian diffusion model 
was more suitable than the empirical model. The NP release profiles 
using artificial skin indicated that the degree of NP release increased 
consistently for 3 h in the NP-incorporated biomaterials with/without 
the addition of MEL when NIR laser was not irradiated. However, when 
irradiated with NIR laser, the NP release ratio (%) of biomaterials with 
MEL rapidly increased to 93.1 – 94.5% for 30 min. In addition, the NP 
release of biomaterials with MEL was about 3.0 – 3.2 times higher than 
that of the biomaterials without MEL. The NP release mechanisms using 
artificial skin could be explained by the empirical model because NP 

Fig. 8. NP release properties of NP-incorporated biomaterials without NIR laser 
irradiation using artificial skin. (a) NP release ratio (%) from NP-incorporated 
biomaterials without the addition of MEL. (b) MEL-added NP release (%) 
from NP-incorporated biomaterials. 

Table 4 
Fickian diffusion and empirical model parameters of NP release from NP-incorporated biomaterials using various pH of artificial skin at 36.5 ℃ and RH 60%.  

Fickian diffusion model  

MSPNP MSPAGNP MSPGLNP 

pH 4.5 5.5 6.5 4.5 5.5 6.5 4.5 5.5 6.5 
Q∞ 100.567 100.551 100.524 100.258 100,259 100.292 100.260 100.258 100.254 
De 1.412 E-11 1.324 E-11 1.172 E-11 1.429 E-11 1.379 E-11 1.326 E-11 1.522 E-11 1.456 E-11 1.380 E-11 
R2 0.873 0.866 0.837 0.874 0.864 0.855 0.887 0.879 0.861 
Empirical model  

MSPNP MSPAGNP MSPGLNP 
pH 4.5 5.5 6.5 4.5 5.5 6.5 4.5 5.5 6.5 
Q∞ 90.176 81.416 60.306 57.703 52.640 57.663 65.267 59.655 51.690 
k 0.0321 0.0289 0.0214 0.0579 0.0528 0.0269 0.0655 0.0599 0.0519 
n 0.690 0.727 0.842 0.663 0.698 0.757 0.616 0.650 0.706 
R2 0.989 0.990 0.996 0.986 0.987 0.990 0.987 0.988 0.985  
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release behavior followed a non-Fickian diffusion mechanism. Thus, 
these results confirmed the applicability of the controlled drug release of 
NP-incorporated biomaterials with MEL in treating acute inflammation. 
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